
Multi-Agent Deep Reinforcement
Learning Algorithms

by

Kenny Song

New York University Shanghai

Computer Science Department

May, 2017

Acknowledgments
A thank you to Keith Ross and Martin Arjovsky for their guidance, wisdom, and debug-
ging help on this project. This has been a great learning experience, and has motivated me
to continue my machine learning studies in the future.

iii

Contents

Acknowledgments ii

1 Introduction 1

2 Background & Related Work 1

3 Policy Gradient 2
3.1 Single-Agent Policy Gradient . 2
3.2 Multi-Agent Policy Gradient . 4

4 SARSA 6
4.1 Single-Agent SARSA . 6
4.2 Multi-Agent SARSA . 7

5 Implementation 8

6 Evaluation 8
6.1 Multi-Agent Tasks . 8
6.2 Results . 10

7 Conclusion 21

References 23

iv

Introduction
Deep reinforcement learning (DRL) combines reinforcement learning algorithms with

(deep) neural networks as function approximators. Impressive progress has been made
in this domain in the recent few years, notably using DRL to surpass human-level perfor-
mance on Atari video games with only pixel data 5 and to beat Go grandmasters 8.

Most of the current research and applications are based on single-agent tasks, e.g. single
player games such as Pacman. The standard reinforcement learning algorithms, such as
policy gradient or Q-learning, do not scale to multi-agent tasks as the action spaces can be
very high-dimensional; for n agents, each withm actions denoted as one-hot vectors, the
joint action space is {0, 1}mn . With traditional approaches, the neural network needed to
map this space would be impractically large.

Our goal was to develop multi-agent algorithms where the network size remains con-
stant even as the number of agents grows. This would allow the network to effectively learn
structure in this action space and discover optimal coordinated action between agents. We
explored two different algorithms:

1. Policy gradient with an LSTM policy net and MLP state value baseline

2. SARSA approach with a hybrid LSTM-MLP Q-function

These have generated promising early results by learning better multi-agent policies than
the baseline for several tasks, and have also solved environments that were too large for tra-
ditional approaches to tackle. However, more work remains to fine-tune these algorithms
and explore alternative approaches.

Background & Related Work
Standard reinforcement learning algorithms include value-function based approaches

and policy-function based approaches (or both, called actor-critic)7. Value-based algorithms
are perhaps the simplest approach, where a state or state-action function is learned. How-
ever, value functions are also indirect and not scalable, as agents need to maximize the val-
ues over a potentially large action space to follow an ϵ-greedy policy.

1

In contrast, policy-based approaches work to directly learn a policy function, which gives
action probabilities at a specific state, π : S × A → [0, 1], where π(s, ·) is a probability
distribution overA. The state space is denoted by S , and the action space byA. In deep
reinforcement learning, π is approximated with a neural network and trained with policy-
based algorithms. A convenient notation is πθ(a | s), which reads as the probability of
selecting action a given state s, where the policy network has parameters θ.

The canonical policy-based method is REINFORCE, also called policy gradient, where
we apply stochastic gradient ascent on J(θ), a performance metric of the policy πθ usually
interpreted as the value of the start state 14. Subtracting a baseline function, usually state-
values, can reduce the variance of gradient updates and thus increase the speed of learning.
Later, this theory was extended to use function approximators for the policy and baseline
functions, which applies to neural network based approaches as well 12. A recent modifica-
tion called Asynchronous Advantage Actor-Critic can further boost performance4.

Most recent successes in deep reinforcement learning involve using deep neural networks
to approximate value functions. A notable example is using deep Q-networks to surpass
human-level performance on Atari video games 5. Deep policy gradient has been successful
at playing Pong 3, but has not been systematically applied to more complex games. In partic-
ular, deep networks seem to be effective at learning from raw pixel data.

Thus, most of deep reinforcement learning has focused on approximating value func-
tions for single agent tasks, since multi-agent joint action spaces grow exponentially more
costly to maximize over. A recent paper9 focused on teaching individual agents to commu-
nicate in order to find multi-agent policies, which is a different approach to this problem.
We do not explore their paper in depth here, though it may serve as a state-of-the-art com-
parison in the future. There have been no other significant attempts at applying deep rein-
forcement learning to multiple agents.

Policy Gradient
Single-Agent Policy Gradient

Conceptually, a policy is a plan that tells the agent which action to take at a given state,
usually given as action probabilities. Thus, a policy is the function, π : S × A → [0, 1],
where π(· | s) := π(s, ·) is a probability distribution overA. This policy can be modeled
with a neural network, written as πθ, where θ represents the weights of the network.

2

To be precise, the neural network (MLP) would have an input layer of size |S| and an
output layer of size |A|, with an arbitrary number of intermediary hidden layers*. The out-
put layer will contain a softmax, which normalizes the output values to valid probabilities.
That is, MLPθ : S → [0, 1]|A|, which we can index into to get values of πθ(a | s).

How may we judge how good a policy is? One metric, which works for both episodic
and continuing environments, is the start value. This is the discounted return we would
expect to get from the start state by following a given policy,

J(θ) := vπθ
(s0) = Eπθ

[
T∑
t=0

γtrt

]
.

In traditional neural network terms, J(θ) is simply the objective function of our policy
network. We do not actually need to separately model the value function v(s), as this ob-
jective function is never evaluated, but implicit in the policy gradient algorithm (if a state
value baseline is used, however, we would need to model vπθ

).
At this point, we can basically do some variant of gradient ascent on J(θ) to maximize

the “goodness” of our policy and converge to the optimal policy. This is the idea of the RE-
INFORCE algorithm 14 for policy-based learning, also just called policy gradient.

The Policy Gradient Theorem defines the gradient of our objective function as 12,

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)qπθ

(s, a)].

In practice, we estimate the unknown q function with empirical Monte-Carlo returns,

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)Gs].

We also subtract a baseline function b(s) fromG, which reduces the variance of the al-
gorithm and leads to faster learning 12. Note that the baseline is only a function of the state.
This is usually turns out to be the state-value function v(s). The update then becomes,

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)(Gs − v(s))].

*In practice, we may not use one-hot state vectors, so the input layer would have size< |S|, but we stick
to this assumption in this paper, wherever |S| is mentioned. Actions are generally one-hot vectors, though.

3

Last, we generally just sample from the expectation for stochastic gradient ascent,

∇θJ(θ) = ∇θ log πθ(s, a)(Gs − v(s)).

Thus, the weight update can be done for each step in an episode, and has the form,

∆θ = α∇θJ(θ) = α∇θ log πθ(s, a)︸ ︷︷ ︸
score function

(Gs − v(s)).

This score function is calculated with standard backpropagation through the MLP.
The baseline function v(s) is modeled by a separate MLP, and is trained separately using
episode returns, with standard supervised learning techniques.

Multi-Agent Policy Gradient

Recall that the MLP policy network has an input layer of size |S| and an output layer of
size |A|. For multi-agent tasks, |A| is exponential in the number of agents. Suppose each
agent hasm actions, that is, its actions are one-hot vectors in {0, 1}m. If there are n agents,
then their joint actions are one-hot vectors in {0, 1}mn . Thus, the output layer of the MLP
policy network would be of sizemn. We reach practical limits of this strategy very quickly;
for only 6 agents with 9 actions each (movements on a board), |A| = 96 = 531, 441.

Clearly, a better approach is needed to deal with large action spaces for multiple agents.
The policy is essentially trying to learn the massive joint probability distribution,

π(a | s) = P[A = a | S = s] = P[A1 = a1, A2 = a2, . . . , An = an | S = s],

whereAi is the action of agent i. Using the chain rule of probability, we can factor this
joint distribution into a product of conditional, one-dimensional distributions,

P[A1, A2, . . . , An | S] = P[A1 | S]× P[A2 | S,A1]× · · · × P[An | S,A1, . . . , An−1].

It turns out that recurrent neural networks, LSTMs in particular, are perfect for the task
of learning these conditional distributions. This technique was recently applied in neural
machine translation to learn an LSTM language model 10. In general, any recurrent neural
network will have the form,

hd = fθ(xd, hd−1),

4

where xd is the input at time-step d and hd is the hidden state of the network at time-
step d. An LSTM, of course, has an additional cell state term,C , that is transferred be-
tween time-steps, so we may view it as,

hd, Cd = fθ(xd, hd−1, Cd−1)

The additional parameters of an LSTM (forget, input, output gates) are summarized in
the θ term. For a more extensive treatment of LSTMs, see the Deep Learning Book 2.

Now, let the LSTM fθ at time-step d have input xd = concat(s, ad−1). Given this in-
put, as well as information from previous time-steps encoded in hd−1 andCd−1, the LSTM
at time-step d therefore corresponds to the conditional distribution P[Ad | S,A1, . . . , Ad−1]

for agent d. (For d = 1, we initialized inputsC0, h0, and a0 to zero.) This is our LSTM
policy network, which at each time-step provides the action probabilities for one agent, con-
ditioned on the state and actions of previous agents, and is run for n time-steps.

This LSTM has input layer size |S| + |Ai| and output layer size |Ai|, whereAi is the
action space for agent i. Thus, the network size remains constant as the number of agents
grows, scaling perfectly for multi-agent tasks. There is the consideration of what to do if the
agents have different action spaces; one approach would be to simply set the output layer
to size |

∪
i Ai| and perform rejection sampling to select actions. For our tasks, we assumed

equivalent agent action spaces, but dealt with issue of state-dependent action spaces with a
masked softmax function, see Evaluation.

An important distinction: the time-steps of the LSTM and time-steps of the episode are
separate concepts. For each time-step t in the episode, t = 1, . . . , T , the LSTM policy net-
work runs for n time-steps, computing the action probabilities for each agent d = 1, . . . , n.

For the LSTM policy net, we can factor the score function into a sum of conditional
distributions, which we can efficiently backpropagate through,

∇θ log πθ(s, a) = ∇θ log
n∏

d=1

Pθ[ad | a1, . . . , ad−1, s]

= ∇θ

n∑
d=1

logPθ[ad | a1, . . . , ad−1, s].

5

SARSA
Single-Agent SARSA

While policy gradient is a policy-based method, meaning that it directly learns a policy
function, SARSA is a value-based method that learns a value function 11. One value func-
tion we’ve already seen is the state-value function, v(s), which gives the value of being in
a certain state. SARSA tries to learn the q(s, a) value function, which gives the value of
taking a specific action from a state.

Value functions induce a policy under the principle that higher-value actions should be
taken more often. The simplest induced policy is then a greedy policy, where the action
argmaxa q(s, a) is always chosen. An ϵ-greedy policy behaves in the same way, except for
selecting a random action with probability ϵ, which encourages exploration. A softmax pol-
icy involves normalizing the action-values through a softmax function, and then sampling
from this distribution.

Traditionally, the q function is given in tabular form, that is, it is just a lookup table with
an entry for every (s, a) pair. The SARSA algorithm was designed for this approach, and
has the following steps,

1. At state st, sample at from q(·, st) (with ϵ-greedy, softmax, etc)

2. Take the action at, and record rt+1, st+1 from the environment

3. At state st+1, sample at+1 from q(·, st+1)without taking the action

4. Update the q(st, at) entry towards rt+1 + γq(st+1, at+1) (weighted average)

5. Repeat from (1) until convergence

However, tabular forms are completely non-scalable, so q functions are generally mod-
eled with a MLP, denoted qθ. The input layer has size |S| + |A|with a scalar output layer.
The update (step 4 above), must then be updated to work with an MLP. Since the idea is to
move q(st, at) towards rt+1 + γq(st+1, at+1), we can use gradient updates to minimize the
squared error between these terms,

∆θ = −α∇θ

[
rt+1 + γqθ(st+1, at+1)︸ ︷︷ ︸

treated as a constant term

−qθ(st, at)
]2
.

6

Note that the underlined target term is treated as constant, so its gradient is zero. We can
simplify the weight update to:

∆θ = α(rt+1 + γqθ(st+1, at+1)− qθ(st, at))∇θqθ(st, at).

Multi-Agent SARSA

Using the MLP architecture above again causes scaling issues with a large action space,
since the input layer is of size |S| + |A|. Thus, we need a q function that scales indepen-
dently of the action space size. An initial approach may be to just use our LSTM policy net
again, where we define qθ as,

qθ(s, a) := log πθ[A = a | S = s] =
n∑

d=1

logPθ[ad | a1, . . . , ad−1, s].

This makes sense as log is monotonically increasing, so qθ assigns higher values to actions
that higher probabilities. It also has the nice property that a softmax policy over this value
function gives us back the LSTM policy probabilities:

softmaxa(qθ(s, ·)) =
exp(qθ(s, a))∑

a′∈A
exp(qθ(s, a′))

=
exp(logPθ[a | s])∑

a′∈A
exp(logPθ[a′ | s])

= Pθ[a | s].

This solves the core scalability issue of value-based approaches, as we no longer need to
maximize the q function over a large action space (as would be needed for ϵ-greedy). How-
ever, our qθ network is somewhat limited in that it can only learn q functions satisfying the
constraint, ∑

a∈A

exp(q(s, a)) = 1.

It is unclear if this poses any practical difficulties, but we would like to remove this con-
straint if possible. So, we added a log-partition function k(s) to qθ, which depends only on
the state. Then, we have,

qθ(s, a) := logPθ[a | s] + k(s),∑
a∈A

exp(qθ(s, a)) =
∑
a∈A

exp(logPθ[a | s]) exp(k(s)) = exp(k(s)).

7

Since k(s) is an arbitrary function, there is no more constraint on the sum of exp(qθ),
and we can now model all possible q functions! The k function can be modeled by a sep-
arate MLP with an input layer of size |S| and scalar output layer. Thus, our qθ is a hybrid
LSTM-MLP system, where both networks are trained simultaneously, and the network
size is independent of the number of agents. The gradient weight update term is exactly the
same as for single-agent SARSA.

Implementation
These algorithms were implemented in PyTorch v0.1.12, a tensor and neural network

library developed by Facebook AI Research. We originally experimented with using Keras
with a Theano backend, but it lacked the flexibility needed to calculate gradients for our
policy network. PyTorch is more imperative and transparent, which allowed us to more
easily write and test these algorithms.

Evaluation and testing were performed with custom, multi-agent tasks written in vanilla
Python 2.7 with Numpy, as we did not find suitable open source implementations of tasks
for multiple agents.

We utilized the NYU Shanghai HPC system to train these models, and all code was writ-
ten with GPU support. For the smaller tasks, there was little performance gain from run-
ning on GPU vs CPU. However, for more complex tasks (hunters with a large number of
agents), GPUs significantly improved the absolute training speed.

At one point, all 2 TB of memory on an HPC node was exhausted by a long-running
training script. I eventually traced this to a memory leak in PyTorch itself, which will be
fixed in the next major release (0.2). This is one of the perils of using beta-stage software.

All code is available open source at: https://github.com/kennysong/deep_rl

Evaluation
Multi-Agent Tasks

We created two custom multi-agent tasks to evaluate our learning algorithms on, as no
simple multi-agent tasks were readily available. The canonical multi-agent game, Starcraft,
is too complex to be a reasonable starting point.

8

https://github.com/pytorch/pytorch/issues/1536
https://github.com/kennysong/deep_rl

1. Gridworld

The first is a standard Gridworld task, adapted from the Cliff Walking task in the Sutton
& Barto textbook 11. On an n × m grid, two agents (one vertical and one horizontal) co-
operate to control the position of a player. The goal is for the player to reach the fixed goal
(top-right) from a fixed starting position (top-left), with a cliff in between. Actions includ-
ing moving to any adjacent cell and staying in place. Every step that the player is not at the
goal incurs a reward of−1, and falling into the cliff incurs a reward of−100 and a state re-
set back to the start. For efficient training, episodes that run over 10,000 steps are cut off
and given a penalty. There is no discounting.

This was also generalized to a 3-dimensional grid, where the cliff was the entire floor ex-
cept for the start and goal, and floors above are empty cells. In this case, three agents cooper-
ate to each control the x, y, and z positions. The reward structure is the same.

2. Hunters

The second is a Hunters vs. Rabbits task, where k hunters try to catchm rabbits on a
square n × n grid. Each hunter corresponds to one agent, who solely controls the hunter’s

9

position. Agents/hunters may have to cooperate to catch all rabbits. For example, in the
grid setup above, the optimal strategy is not as simple as each hunter independently moving
towards their closest rabbit. This task works well to test the scalability of our algorithms, as
we can easily inflate the action space by adding additional hunters, without needing to alter
the board as in 3-D Gridworld.

Capturing a rabbit will generate a reward of+1, and there is no penalty per time-step.
However, a discount factor of γ ∈ [0.7, 1)was chosen to incentivize hunters to complete
the task more rapidly. Each episode is initialized with random positions for hunters and
rabbits, rabbits are stationary within an episode, and both hunters and rabbits disappear on
capture. Additional game settings include having rabbits move randomly or opposite to the
nearest hunter, and keeping hunters in the game after capture.

*. State-Dependent Action Spaces

One consideration in our environments is that the action spaces are state-dependent. For
example, when an agent is against the boundary of the grid, it cannot move into the wall.
Thus, it was necessary to devise a way to restrict the action space based on the state.

Our custom tasks provided a function to return a bitmask of the actions available to a
certain agent at a given state. This bitmask was used in conjunction with a masked softmax
function to generate filtered action probabilities. This softmax was made numerically stable
by adapting the exp-normalize trick 13,

πi(x,m) =
exi−b ∗m∑
i e

xi−b ∗m
, where b = maxi∈m{xi}.

This masked softmax technique could also be used for agent-dependent action spaces.

Results

For the evaluation, we compared our multi-agent algorithms against standard single-
agent algorithms as the baseline, except when the task was too large for the baseline to han-
dle. First, we can look at the learning rate and policy performance on the Gridworld task
with policy gradient.

10

The top graph corresponds to a Gridworld of size 12 × 12, and the bottom corresponds
to a Gridworld of size 6 × 6 × 6. In both cases, we see that the single-agent MLP baseline
converges slightly faster than the LSTM policy network. For the 3-D Gridworld, the base-
line network is somewhat unstable for the first few thousand episodes, though this behavior
is somewhat random and may also be stable for some runs. Thus, it is not conclusive that
the LSTM policy network is more stable than the baseline.

11

We can also directly evaluate the learned policies after 100,000 episodes of training on
10,000 new games. Note that these policies are almost, but not completely, deterministic
(which is why a log histogram is used). Shorter episode lengths are better, as it indicates that
the agents are finding the goal in less steps.

For the 12 × 12 grid, we can see that the single-agent baseline finds the optimal policy
of 11 steps, while the LSTM policy only gets to a 12-step suboptimal policy. For the 6 ×
6 × 6 grid, neither approach finds the optimal 5-step policy, but the LSTM policy does
choose better paths more frequently. This suggests that the multi-agent approaches may
work better for more complex tasks.

12

Looking next at the Hunters task with 2 hunters + 2 rabbits and 3 hunters + 3 rabbits,

For 2 hunters, we can again see that the single-agent baseline learns slightly faster than
the LSTM policy, but plateaus at a suboptimal policy. For 3 hunters, the baseline loses this
edge and performs even more poorly compared to the LSTM policy.

13

Now, directly evaluating the learned policies after 1,000,000 episodes of training on
10,000 new games with random starting states. (The y-axis is now linear.) Again, shorter
episode lengths are better as they indicate that the agents are able to capture the rabbits in
less steps. Note that for an optimal policy, any starting state will take less than 5 steps to
complete (the farthest two points on the board).

For 2 hunters, the multi-agent approach slightly outperforms the baseline as is it more
left-skewed. For 3 hunters, the baseline significantly underperforms against the LSTM pol-
icy, having visibly deteriorated when scaling from 2 to 3 agents. The LSTM policy does not
suffer such a large hit in performance. We tested this further by training on the game with
4 hunters, which at 94 = 5661 joint actions, was too large to practically train a baseline on
(given the resources available).

14

As the policy histogram shows, the LSTM policy still performs very well when increas-
ing to 4 agents. It is almost always able to capture all 4 rabbits within 6 steps. These results
are very promising, as the LSTM can solve a task that is too large for the baseline. How-
ever, performance deteriorates rapidly when increasing the number of agents to 5-6 hunters.
Here are the policy performances for these two games,

15

It’s unclear why there is a very sudden drop in performance, as almost no games took
more than 10 steps to finish for 4 hunters, but this is the majority for 5 and 6 hunters. We
can also look at the time-to-capture for each rabbit,

16

This shows that rabbits are generally steadily caught one after the other, but with a long
tail of rabbits that take a longer time to capture. Next, we also tried a curriculum learning
approach 1 where the network first trains for 100,000 episodes on a game that terminates
early when just 3 rabbits are caught, then 4 rabbits, and so on. This would allow the agents
to effectively learn simpler tasks that can serve as a better starting point for increasingly
more complex tasks. However, this approach only had a very minor boost in performance,

17

A variation of the curriculum was also explored, where the game starts with only 3 hunters
and rabbits, and an additional hunter and rabbit was added for every 100,000 episodes of
training. The result of this was slightly worse than the former curriculum, so it was also un-
successful. More investigation is needed to understand the drop in performance at 5 agents.

Reformulating the task, however, can provide an isolated demonstration of the multi-
agent approach’s ability to scale. If we terminate the hunters game early when just 3 rabbits
are caught, regardless of the number of hunters or rabbits, our technique works very well.
Though this game is simpler, it is still a task that the traditional single-agent approach can-

18

not tackle at all, as the joint action space is much too large for practical purposes. Examin-
ing the performance of 10 hunters and 10 rabbits on a 10× 10 grid in this environment,

The LSTM learns a very good policy for this truncated task, and very quickly. Very few
episodes take more than 9 time-steps to complete, which is the longest possible episode for
an optimal policy.

19

Next, we can look at the SARSA approach. This was unsuccessful in finding a good pol-
icy. Here is a graph of its training performance for a 4× 4Gridworld:

There’s a nice learning curve, indicating that SARSA is able to effectively learn at the
beginning, but it gets trapped in a very suboptimal policy fairly quickly. The policy it con-
verges to takes about 40 steps to reach the exit, which is ridiculous for a 4× 4 grid.

To try to debug this, we implemented a target network which serves only as a stationary
target for updating the policy network parameters, as in the DQN paper 5. However, this
proved to be ineffective and SARSA remained unsuccessful. It will also take more investiga-
tion to determine why this is occurring (perhaps a subtle bug in the code). However, since
multi-agent SARSA is structurally very similar to multi-agent policy gradient, it may not
provide better performance even when working.

Last, we tested various modifications for both policy gradient and SARSA, such as using
an entropy term to encourage exploration4, utilizing TD(k) returns rather than Monte-
Carlo returns for training both the policy and value networks, various learning rates and
discount factors, and others. However, a majority of these either did not affect or harmed
performance, and the best combination of settings was used for the evaluation.

20

Conclusion
In this project, we have attempted to develop reinforcement learning algorithms that

scale well to multiple agents, as opposed to traditional approaches where the network size
is exponential in the number of agents. These algorithms lead to promising early results,
which outperform the single-agent baseline for our Hunters task and even work on tasks
too large for the baseline.

However, much future work remains. The most important issues include investigating
why multi-agent policy gradient does not work for more than 5 hunters, and debugging our
SARSA algorithm to escape from the local optima. We can also tune the hyperparameters
for our algorithms further, such as the entropy, learning rate, choice of optimizer, using
TD(k) returns, and others. We can also look at using the state-of-the-art DQNs and A3C
as baselines that may perform better than our current baseline for a fairer comparison. An-
other point of comparison may be communication-based multi-agent systems9. Addition-
ally, we may want to investigate other multi-agent environments with more dense rewards,
as our current tasks only release sparse rewards, which may pose separate challenges and
obstacles. Last, other approaches based on H-functions6 or modifying the MDP were not
implemented due to time constraints, but could be a promising avenue of exploration.

21

References
[1] Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning.

In Proceedings of the 26th annual international conference on machine learning (pp.
41–48).: ACM.

[2] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[3] Karpathy, A. (2016). Deep reinforcement learning: Pong from pixels.

[4] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., &
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.
In International Conference on Machine Learning.

[5] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hass-
abis, D. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

[6] Pazis, J. & Parr, R. (2011). Generalized value functions for large action sets. In Pro-
ceedings of the 28th International Conference on Machine Learning (ICML-11) (pp.
1185–1192).

[7] Silver, D. (2015). Policy gradient methods.

[8] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587),
484–489.

[9] Sukhbaatar, S., Fergus, R., et al. (2016). Learning multiagent communication with
backpropagation. InAdvances in Neural Information Processing Systems (pp. 2244–
2252).

22

http://www.deeplearningbook.org

[10] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with
neural networks. InAdvances in neural information processing systems (pp. 3104–
3112).

[11] Sutton, R. S. & Barto, A. G. (2017). Reinforcement Learning: An Introduction
(Draft).

[12] Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y., et al. (1999). Policy gra-
dient methods for reinforcement learning with function approximation. InNIPS,
volume 99 (pp. 1057–1063).

[13] Vieira, T. (2014). Exp-normalize trick.

[14] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3-4), 229–256.

23

	Acknowledgments
	Introduction
	Background & Related Work
	Policy Gradient
	Single-Agent Policy Gradient
	Multi-Agent Policy Gradient

	SARSA
	Single-Agent SARSA
	Multi-Agent SARSA

	Implementation
	Evaluation
	Multi-Agent Tasks
	Results

	Conclusion
	References

